Chiral superfluidity with p-wave symmetry from an interacting s-wave atomic Fermi gas.
نویسندگان
چکیده
Chiral p-wave superfluids are fascinating topological quantum states of matter that have been found in the liquid (3)He-A phase and arguably in the electronic Sr2RuO4 superconductor. They are fundamentally related to the fractional 5/2 quantum Hall state, which supports fractional exotic excitations. Past studies show that they require spin-triplet pairing of fermions by p-wave interaction. Here we report that a p-wave chiral superfluid state can arise from spin-singlet pairing for an s-wave interacting atomic Fermi gas in an optical lattice. This p-wave state is conceptually distinct from all previous conventional p-wave states as it is for the centre-of-mass motion, instead of the relative motion. It leads to spontaneous generation of angular momentum, finite Chern numbers and topologically protected chiral fermionic zero modes bounded to domain walls, all occuring at a higher critical temperature in relative scales. Signature quantities are predicted for the cold atom experimental condition.
منابع مشابه
Theory of ultracold atomic Fermi gases
The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions which play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems interactions are characterized by a single parameter, the s-wave scattering len...
متن کاملInduced P-wave superfluidity in asymmetric fermi gases.
We show that two new intraspecies P-wave superfluid phases appear in two-component asymmetric Fermi systems with short-range S-wave interactions. In the BEC limit, phonons of the molecular BEC induce P-wave superfluidity in the excess fermions. In the BCS limit, density fluctuations induce P-wave superfluidity in both the majority and the minority species. These phases may be realized in experi...
متن کاملAnisotropic Fermi superfluid via p-wave Feshbach resonance.
We investigate theoretically fermionic superfluidity induced by Feshbach resonance in the orbital p-wave channel and determine the general phase diagram. In contrast with superfluid (3)He, due to the dipole interaction, the pairing is extremely anisotropic. When this dipole interaction is relatively strong, the pairing has symmetry k(z). When it is relatively weak, it is of symmetry k(z) + ibet...
متن کاملEvolution from BCS to BEC superfluidity in p-wave Fermi gases.
We consider the evolution of superfluid properties of a three-dimensional p-wave Fermi gas from a weak coupling Bardeen-Cooper-Schrieffer (BCS) to strong coupling Bose-Einstein condensation (BEC) limit as a function of scattering volume. At zero temperature, we show that a quantum phase transition occurs for p-wave systems, unlike the s-wave case where the BCS to BEC evolution is just a crossov...
متن کاملEngineering superfluidity in Bose-Fermi mixtures of ultracold atoms
We investigate many-body phase diagrams of atomic boson-fermion mixtures loaded in the two-dimensional optical lattice. Bosons mediate an attractive, finite-range interaction between fermions, leading to fermion pairing phases of different orbital symmetries. Specifically, we show that by properly tuning atomic and lattice parameters it is possible to create superfluids with s-, p-, and d-wave ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014